B.SC. THIRD SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course ID: 32111

Course Code: SH/MTH/301/C-5

Course Title: Theory of Real Functions and Introduction to Metric Space

Full Marks: 40
Time: $\mathbf{2}$ Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:
a) Let X be a non-empty set and $f: X \rightarrow R$ be an injective function. Then prove that $d(x, y)=|f(x)-f(y)|, \forall x, y \in X$ defines a metric on X.
b) If $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos |2 x|$, then find the set of points of non differentiability.
c) If $f(x)$ is differentiable on (a, b) and $f(a)=0$ and there exists a real number k such that $\left|f^{\prime}(x)\right| \leq k|f(x)|$ on $[a, b]$, then show that $f(x)=0$ for all $x \in[a, b]$.
d) If $f(x+y)=f(x) f(y)$ for all x and $y, f(3)=3$ and $f^{\prime}(0)=11$, then find $f^{\prime}(3)$.
e) If $P(x)$ is a polynomial of degree >1 and $k \in R$. Prove that between any two real roots of $P(x)=0$ there is a real root of $P^{\prime}(x)+k P(x)=0$.
f) Show that there does not exist a function \emptyset such that $\emptyset^{\prime}(x)=f(x)$, where $f(x)=[x]$.
g) Let (X, d) be a metric space and $Y \subseteq X$ where Y is separable and dense in X. Show that X is separable.
h) If $f(x)=\sin x$, prove that $\lim _{h \rightarrow 0} \theta=\frac{1}{\sqrt{3}}$, where θ is given by $f(h)=f(0)+h f^{\prime}(\theta h)$.
2. Answer any four of the following questions:
a) (i) If the functions f, g and their derivatives are continuous in $[a, b]$ and if $f(x) g^{\prime}(x)-$ $g(x) f^{\prime}(x) \neq 0$, then show that between any two roots of $f(x)=0$ there lies a root of $g(x)=0$.
(ii) Prove or disprove: "Let f be continuous in a bounded open interval (a, b) and $\lim _{x \rightarrow a+} f(x)$ and $\lim _{x \rightarrow b-} f(x)$ both exist finitely. Then $f(x)$ is uniformly continuous on [a,b]." $3+2$
b) Let $a, b \in R$ and $a<b$. If a function f is continuous on (a, b) except possibly at $c \in(a, b)$. If $\lim _{x \rightarrow c} f^{\prime}(x)$ is finite, then prove that $f^{\prime}(c)=l$.
c) (i) Show that ' θ ' which occurs in the Lagrange's Mean Value theorem tends to $\frac{1}{2}$ as $h \rightarrow 0$, provided $f^{\prime \prime \prime}(x)$ is continuous.
(ii) Let $f\left(\frac{x+y}{2}\right)=\frac{1}{2}[f(x)+f(y)]$, for all x and y. If $f^{\prime}(0)$ exists and equals (-1) and $f(0)=1$, find $f(3)$.
d) Let $D \subset R$ be a bounded set and $f: D \rightarrow R$ be a function. If for each Cauchy sequence $\left\{x_{n}\right\}$ in D , the sequence $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in R, then show that f is uniformly continuous on D.
e) (i) Expand $\sin x$ in powers of $\left(x-\frac{\pi}{2}\right)$ with the help of Taylor's theorem.
(ii) Let the real line R be endowed with usual metric d. Give an example of two closed subsets A and B in (R, d) such that $d(A, B)=0$, but $A \cap B=\phi$.
f) Let define a function $d: R^{2} \times R^{2} \rightarrow R \quad$ by

$$
d(x, y)=\left\{\begin{array}{c}
\left|x_{2}-y_{2}\right| \text { if } x_{1}=y_{1} \\
\left|x_{1}-y_{1}\right|+\left|x_{2}\right|+\left|y_{2}\right| \text { if } x_{1} \neq y_{1}
\end{array}\right.
$$

where $x=\left(x_{1}, x_{2},\right), y=\left(y_{1}, y_{2}\right)$ are arbitrary elements of R^{2}. Prove that d is a metric on R^{2}.
3. Answer any one of the following questions:
a) (i) Let f be twice differentiable and $|f(x)|<\alpha,\left|f^{\prime \prime}(x)\right|<\beta$, for $x>a$, then show that $\left|f^{\prime}(x)\right|<2 \sqrt{\alpha \beta}$, for all $x>a$.
(ii) If $x_{1}, x_{2}, \ldots ., x_{n}$ are arbitrary points of a metric space (X, d), then prove that $d\left(x_{1}, x_{n}\right) \leq$ $d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{n-1}, x_{n}\right)$.
(iii) Let X be the set of all real-valued continuous functions on [0,1]. Define $d(f, g)=$ $\int_{0}^{1}|f(x)-g(x)| d x$, for all $f, g \in X$. Show that d is a metric for X.
b) (i) Let $f: R \rightarrow R$ be continuous on R. A point $c \in R$ is said to be a fixed point of f if $f(c)=c$ holds. Prove that the set of all fixed points of f is a closed set.
(ii) If f is defined and differentiable on an interval, then show that the range of f^{\prime} is an interval
(iii) Let $I=[a, b]$ be a closed and bounded interval, and a function $f: I \rightarrow R$ be continuous on I. Then show that f is uniformly continuous on I.

